

État des populations de grands salmonidés migrateurs en Europe et dans le monde

Status of Atlantic salmon population in Europe and Worldwide

Etienne Rivot

UMR ESE Ecology and Ecosystem Health

16 Mai 2018

A dramatic decline of North Atlantic diadromous fishes

Atlantic salmon (Salmo salar)

Source : ICES WGNAS Report 2015

Populations are assessed and managed at various scales

Outlines

Assessment at local scale (river-by-river)

 References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)

Assessment at regional or national scale

- % of rivers with eggs deposition > CL
- Total returns / national CL

Assessment at international scale

- Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
- Scientific advices to manage mixed stock fisheries at sea

Conclusions and future prospects

Outlines

Assessment at local scale (river-by-river)

- References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)
- Assessment at regional or national scale
 - % of rivers with eggs deposition > *CL*
 - Total returns / national CL
- Assessment at international scale
 - Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
 - Scientific advices to manage mixed stock fisheries at sea
- Conclusions and future prospects

- River-by-river basis
- Assess the abundance of returns against a reference

Conservation limits (CLs)

Reference = Conservation Limits

In Europe, Conservation Limits (*CLs*) = tradeoffs between conservation and exploitation

= Eggs deposition that produces MSY

1998

CLs are derived from pop. dyn. models = Stock-recruitment models

Surplus = fraction of the population that can be harvested while maintaining an equilibrium

Exploitation

Conservation

Establishing CLs for all rivers ?

Conservation limits (CLs)

Prévost et al., ICES J. Mar. Sci, 2003

Example France

4 index rivers in France

- **58 salmon rivers in France** (NASCO)
- 4 index rivers

Monitoring programs since 20 or 30 years

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

MINISTÈRE DE L'ENVIRONNEMENT

	Parrs (electrofishing)	Smolt (trapping + mark/recapture)	Adults (trapping + mark/recapture)
Bresle Oir Scorff Nivelle	× < <	 ✓ ✓ ✓ ✓ ✓ 	 ✓ ✓ ✓ ✓

Definition of CLs in Britany and lower Normandy

CLs and TAC in France

- **58 salmon rivers in France** (NASCO)
- out of which 33 have a CL (in 2015)
- CLs used to defined TAC on a river-by river basis

-	TAC global	TAC	TAC	L.C.		
Cours d'eau	(nombre d'œufs	Saumon	Castillon	(cible de dépose d'œufs)		
	prélevables)	de printemps	Castinon	En millions		
	ARTOIS-PICARDIE					
CANCHE	NR	0	10	Pas de L.C. définie		
AUTHIE	NR	0	10	Pas de L.C. définie		
	SEIN	IE-NORMANDIE				
Haute-Norn	nandie					
BRESLE	NR	2	8	0.28		
ARQUES	NR	2	8	0.13		
Basse-Norn	nandie					
TOUQUES	25 381	2	8	Pas de L.C. définie		
VIRE	22 000	2	8	N.R.		
SAIRE	38 500	3	12	Pas de L.C. définie		
SIENNE	479 500	34	155	0.65		
SEE; SELUNE	1 474 000	105	476	1.06		
	LOI	RE-BRETAGNE				
Bretagne	Nord					
COUESNON	188 350	10	91	0.46		
GOUET	18 929	2	9	Pas de L.C. définie		
LEFF	195 947	11	95	0.24		
TRIEUX	572 804	31	278	0.74		
JAUDY	146 963	8	71	0.49		
LEGUER	903 556	49	438	0.91		
DOURON	272 065	15	132	0.21		
QUEFFLEUTH	460 401	25	223	0.19		
PENZE	622 365	34	302	0.28		
DOURDUFF	109 141	6	53	0.15		
JARLOT	134 295	7	65	0.19		
FLECHE	119 203	6	58	0.17		
ABER ILDUT	145 614	8	71	0.20		
ABER BENOIT	106 626	6	52	0.15		
ABER WRACH	136 810	7	66	0.19		
ELORN	899 257	48	436	0.54		
MIGNONNE	107 880	6	52	0.18		
CAMFROUT	104 148	0	50	0.11		
FAOU	18 001	1	9	0.08		
AULNE	214 760	12	104	1.20		
COVEN	Bretagne Sud					
ODET, IET, STEID	1 140 644	61	552	174		
BELON	86 503	5	10	0.12		
AVEN	420 024	23	204	0.12		
FLE	920 924	120	1 077	1.62		
SCOPEE	2 221 175	120	276	0.05		
RIAVET	638 256	42	300	1.67		
KERGROIN	53 598	3	26	0.12		
REAGROIA	AD(JUR-GARONNE	20	0.12		
GAVE OLORON	ALX.	on ontoning				
GAVE MAULEON						
GAVE DE PAU		Pas d	le T.A.C.			
NIVE	VE Pas de L.C.					
ADOUR		- 4.5				
NIVELLE						

Source : Synthèse sur l'état des populations, des pressions et des modalités de gestion du Saumon Atlantique. INRA, AFB. Rapport intermédiaire Janvier 2017

Outlines

Assessment at local scale (river-by-river)

 References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)

Assessment at regional or national scale

- % of rivers with eggs deposition > CL
- Total returns / national CL
- Assessment at international scale
 - Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
 - Scientific advices to manage mixed stock fisheries at sea
- Conclusions and future prospects

Compliance to river-specific CLs - Europe

Example Fr (2015) 60% = 20/33 have egg deposition > CL

Source : ICES WGNAS Report 2018

Compliance to river-specific CLs - North America

- Number of rivers assessed annually
- □ Number of rivers meeting *CLs*

Definition of *CL* different than in Europe

- CLs correspond to the eggs deposition that produces ½ maximum recruitment
- Concern the 2SW fish component of the population only

Source : ICES WGNAS Report 2018

Outlines

- Assessment at local scale (river-by-river)
 - References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)

Assessment at regional or national scale

- % of rivers with eggs deposition > *CL*
- Total returns / national CL
- Assessment at international scale
 - Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
 - Scientific advices to manage mixed stock fisheries at sea
- Conclusions and future prospects

Example France

France - Estimates of total returns

4 index rivers

- Mandatory declaration of rodand-line catches in all rivers
- Only a few rivers with reliable estimates of harvest rates

France

Estimates of total returns and spawners

Example

UK England and Wales

(with courtesy of Ian Russel and Jonathan Gibson, CEFAS, ICES WGNAS)

UK E&W - Estimates of total returns

~ 80 salmon rivers in UK E&W

Source : ICES WGNAS 2018, Report for UK E&W

UK E&W - Estimates of total returns

Source : ICES WGNAS 2018, Report for UK E&W

UK England & Wales

Estimates of total returns and spawners

Overview Europe and North America

Prob. (Returns > CLs)

N. America

Europe

2017 - MSW fish

Source : ICES WGNAS Report 2018

Outlines

- Assessment at local scale (river-by-river)
 - References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)
- Assessment at regional or national scale
 - % of rivers with eggs deposition > *CL*
 - Total returns / national CL

Assessment at international scale

- Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
- Scientific advices to manage mixed stock fisheries at sea
- Conclusions and future prospects

Assessing salmon abundance at sea "PFA and Life Cycle Model"

- A population dynamic model
- Fitted to time series of "data" aggregated at the national/regional scale (1971-2017)
 - estimate abundance at sea before any marine fishery (PFA)
 - assess trends in post-smolt marine survival
 - predict home-water returns under several catch options at sea (Greenland and Faroes)
- Several versions
 - Bayesian state-space PFA models (NAC: Prévost et al., 2009; NEAC: Rivot et al., 2009)
 - Bayesian Life Cycle Model (Olmos, Rivot et al. in prep.)

Estimates of PFA and marine productivity France and UK *E&W*

Source : ICES WGNAS 2018

Estimates of PFA and marine productivity Continental stock groupings

Eggs \rightarrow PFA productivity

Source : ICES WGNAS Report 2018

Scientific advices for managing mixed stock fisheries (W. Greenland and Faroes)

Forecast of returns given under scenarios of catches

N. America

Scenario = 0 catches in Greenland Prob.(Returns > Objectives)

S
,

Europe

35

Prob.(Returns > CLs)

Region	2SW Objective to NAC		Probability of meeting 2SW objectives in the absence of fisheries (2SW return year)		
		2018	2019	2020	2021
Labrador	34 746	0.826	0.871	0.888	0.898
Newfoundland	4 022	0.100	0.308	0.289	0.392
Québec	29 446	0.391	0.387	0.271	0.316
Gulf	30 430	0.033	0.087	0.102	0.194
Scotia-Fundy	10 976	<0.001	0.001	0.000	0.003
USA	4 549	0.000	0.001	0.002	0.006
Simultaneous to North America		0.000	0.000	0.000	0.000

100% 8 90% 80% NEAC-N-1SW Probability of achieving SER 70% NEAC-N-MSW 60% 50% NEAC-S-1SW 40% NEAC-S-MSW 30% 20% All complexes simultaneous 109 0% 60 120 140 160 180 200 TAC Option (t)

 \rightarrow Scientific advice: Quotas = 0

W. Greenland: Quotas 2017 = 45t (~15000 fish)

Source : ICES WGNAS Report 2018

Outlines

- Assessment at local scale (river-by-river)
 - References points to assess abundance of returns on a river-by-river basis: Conservation limits (CLs)
- Assessment at regional or national scale
 - % of rivers with eggs deposition > *CL*
 - Total returns / national CL
- Assessment at international scale
 - Abundance at sea before any marine fishery (*Pre-Fishery Abundance, PFA*)
 - Scientific advices to manage mixed stock fisheries at sea

Conclusions and future prospects

Status of Atlantic salmon populations

Low stock status in the three continental stock groups

- Some exceptions e.g. northern Canada (Labrador)

Causes are multifactorial

- Recent declining trends in abundance largely attributed to poor environmental conditions at sea (Beaugrand and Reid, 2012, Friedland et al., 2013, Mills et al., 2013)
- Reinforced by observations from Index rivers
 - No evidence for a general declining trend in smolt production
 - Evidence of declining smolt-to-adults return rates

Changes in life history traits

- Prop. 2SW has declined overall; seems to do slightly better in the last decade

- Worrisome declining trends in mean length/weigh of fish observed in Europe (Bacon et al., 2009; od et al. 2010; Jonsson et al. 216; Bal et al. 2017)

Status of Atlantic salmon populations

Scientific advice for fisheries management

- Keep harvest rate low !
 - Marine mixed stock fisheries \rightarrow Advice = zero quota
 - Coastal / freshwater fisheries \rightarrow Limited + protection measures for 2SW
- Cumulated harvest rate in late 2010's is low compared to the early 1980's
 - ~ 10-15% ~ >50%

Much can be learned from improving consistency in assessment approaches across scales

 Harmonizing assessment approaches within Europe and between Europe and N. America

N. America		Europe
 Eggs deposition that maximizes smolt production Currently 2SW only 	CLS Harmonization under progress	 Eggs deposition that produces MSY 1SW and 2SW Some SU still do not have river-specific <i>CLs</i> (<i>e.g.</i> Scotland)
Scientific advice to	o manage mix	ed stock fisheries
OIm	Developing one single model os, Rivot et al. in pre	ep.

Much can be learned from improving consistency in assessment approaches across scales

Enhancing coherency between local and national/international scale: the key role of Index rivers

Thanks !